A Fast Reconstruction Algorithm for Fluorescence Optical Diffusion Tomography Based on Preiteration
نویسندگان
چکیده
Fluorescence optical diffusion tomography in the near-infrared (NIR) bandwidth is considered to be one of the most promising ways for noninvasive molecular-based imaging. Many reconstructive approaches to it utilize iterative methods for data inversion. However, they are time-consuming and they are far from meeting the real-time imaging demands. In this work, a fast preiteration algorithm based on the generalized inverse matrix is proposed. This method needs only one step of matrix-vector multiplication online, by pushing the iteration process to be executed offline. In the preiteration process, the second-order iterative format is employed to exponentially accelerate the convergence. Simulations based on an analytical diffusion model show that the distribution of fluorescent yield can be well estimated by this algorithm and the reconstructed speed is remarkably increased.
منابع مشابه
Multiple-view fluorescence optical tomography reconstruction using compression of experimental data.
We report on the experimental demonstration of a fast reconstruction method for multiview fluorescence diffuse optical tomography by using a wavelet-based data compression. We experimentally demonstrate that the use of data compression combined with the multiview approach makes it possible to perform a fast reconstruction of high quality. A structured illumination approach, guided by the compre...
متن کاملFast System Matrix Calculation in CT Iterative Reconstruction
Introduction: Iterative reconstruction techniques provide better image quality and have the potential for reconstructions with lower imaging dose than classical methods in computed tomography (CT). However, the computational speed is major concern for these iterative techniques. The system matrix calculation during the forward- and back projection is one of the most time- cons...
متن کاملImprovement of fluorescence-enhanced optical tomography with improved optical filtering and accurate model-based reconstruction algorithms.
The goal of preclinical fluorescence-enhanced optical tomography (FEOT) is to provide three-dimensional fluorophore distribution for a myriad of drug and disease discovery studies in small animals. Effective measurements, as well as fast and robust image reconstruction, are necessary for extensive applications. Compared to bioluminescence tomography (BLT), FEOT may result in improved image qual...
متن کاملReconstruction of an optical inhomogeneity map improves fluorescence diffuse optical tomography
We propose a new reconstruction algorithm for fluorescence diffuse optical tomography, which is designed for highly heterogeneous objects, such as biological tissues. It is a two-step algorithm that exploits continuous-wave measurements acquired at both excitation and fluorescence wavelengths. First, an optical inhomogeneity map, which depends on both absorption and diffusion coefficients, is o...
متن کاملFluorescence Image Reconstruction for Optical Tomography Based on Transient Radiation Transfer Equation
Image reconstruction is a bottleneck problem that impedes real time application of optical tomography technology. In this paper, we propose a novel fluorescence optical tomography method with a fast yet accurate algorithm for 3D image reconstruction. This imaging method is demonstrated using radiation transfer modeling based design. First the transport of ultrafast laser radiation governed by r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International Journal of Biomedical Imaging
دوره 2007 شماره
صفحات -
تاریخ انتشار 2007